Tuesday, June 24, 2014

power calculations of multirotors uav


Calculation of Multirotor UAV Required Power

to calculate the power required for an uav rotor craft or multirotor uav you have to define your flight conditions and design requirements

Input Data:

a)     Flight Conditions:

Temperature, T

  Density, ρ

Specific Heat, Ɣ 

Gas Constant, Ru

b)    Design Requirement:

Gross Weight, W

Tip Mach number, Mt

Forward Velocity, Vf

 Climb Velocity, Vc  
Procedure of calculation:

1.   Tip speed, ΩR

2.   Thrust Coefficient CT


3.   Induced Velocity Vi


4.   inflow ratio ג




5.   Solidity σ



6.     Advance ratio μ


7.     Parasite Area 

8.     Power required


9.     Total Power



Power Calculations Matlab code:

a)     Code

clc

closeall

clearall

% INPUT DATA

%% 1- Flight Condition

T=288; rou=1.225; Ru=287; gama=1.4;

%% 2- Design Requirment

w=3*9.81; Mtip=0.2; Vc=2; Vf=0;

%% 3- Geometry available

C=0.03;  R=0.24; A=pi*R^2 ;

%% other Givens

K=1.15;  N=2; CDo=0.01;



% CALCULATIONS

% Tip speed

Vtip=Mtip*sqrt(gama*Ru*T)-Vf;

% Thrust Coefficint

Ct=(w)/(rou*A*Vtip^2);

% Induced Velocity

Vi=sqrt((w)/(2*rou*A));

%Inflow Ratio

lamdai=Vi/Vtip;

% inflow ratio >> climb

lamdac=Vc/Vtip;

% Solidity

S=(N*C)/(pi*R);

% Advance Ratio

mu=Vf/Vtip;

% Parasite area

f=0.1*A;

% Power Required

Pt=((K*lamdai*Ct)+(0.5*CDo*(1+K*mu^2))+(0.5*mu^3*(f/A))+(lamdac*Ct))*rou*A*Vtip^3

% total power included losses

P=1.1*Pt

% RPM

cp=(Pt/(rou*A*Vtip^3));

Q=cp*rou*A*Vtip^2*R;

omega=(Pt/Q)*(60/(2*pi))



b)    Results

PT683watt

P=752watt

=  2707  RPM



Variation of power with forward velocity:

a)     MatLab code



clc

closeall

clearall



T=288; rou=1.225; Ru=287; gama=1.4;

w=3*9.8; Mtip=0.2;

C=0.03;  R=0.24; A=pi*R^2 ;

K=1.15;  N=2; CDo=0.01; Vc=2;

Vf=0:0.01:30;

for i=1:length(Vf)

Vtip(i)=Mtip*sqrt(gama*Ru*T)-Vf(i);

Ct(i)=(w)/(rou*A*Vtip(i)^2);

Vi=sqrt((w)/(2*rou*A));

lamdai(i)=Vi/Vtip(i);

lamdac(i)=Vc/Vtip(i);

S=(N*C)/(pi*R);

mu(i)=Vf(i)/Vtip(i);

f=0.1*A;

Pt(i)=((K*lamdai(i)*Ct(i))+(0.5*CDo*(1+K*mu(i)^2))+(0.5*mu(i)^3*(f/A))+(lamdac(i)*Ct(i)))*rou*A*Vtip(i)^3;

P(i)=1.1*Pt(i);

end

figure(1)

plot(Vf,P/3,'linewidth',1.5)

gridon

xlabel('Forword Velocity (m/s)','fontsize',14)

ylabel('Power Required (watt) ','fontsize',14)

title('Power of one Rotor','fontsize',18)



figure(2)

plot(Vf,P,'linewidth',1.5)

gridon

xlabel('Forword Velocity (m/s)','fontsize',14)

ylabel('Power (watt) ','fontsize',14)

title('Performnce','fontsize',18)



b)    Results 
































1 comment:

  1. Great Blog, there is so much reality written in this content and everything is something which is very hard to be argued. Top notch blog having excellent content. Land Surveying Drones

    ReplyDelete