Calculation of Multirotor UAV Required Power
to calculate the power required for
an uav rotor craft or multirotor uav you have to define your flight conditions
and design requirements
Input Data:
a) Flight
Conditions:
Temperature, T
Density, ρ
Specific Heat, Ɣ
Gas Constant, Ru
b) Design
Requirement:
Gross Weight, W
Tip Mach number, Mt
Forward Velocity, Vf
Climb Velocity, Vc
Procedure of calculation:
1. Tip speed, ΩR
2. Thrust
Coefficient CT
3. Induced
Velocity Vi
4. inflow ratio ג
5. Solidity σ
6. Advance ratio
μ
7. Parasite Area
8. Power
required
9. Total Power
Power Calculations Matlab code:
a) Code
clc
closeall
clearall
% INPUT DATA
%% 1- Flight Condition
T=288; rou=1.225; Ru=287; gama=1.4;
%% 2- Design Requirment
w=3*9.81; Mtip=0.2; Vc=2; Vf=0;
%% 3- Geometry available
C=0.03;
R=0.24; A=pi*R^2 ;
%% other Givens
K=1.15; N=2;
CDo=0.01;
% CALCULATIONS
% Tip speed
Vtip=Mtip*sqrt(gama*Ru*T)-Vf;
% Thrust Coefficint
Ct=(w)/(rou*A*Vtip^2);
% Induced Velocity
Vi=sqrt((w)/(2*rou*A));
%Inflow Ratio
lamdai=Vi/Vtip;
% inflow ratio >> climb
lamdac=Vc/Vtip;
% Solidity
S=(N*C)/(pi*R);
% Advance Ratio
mu=Vf/Vtip;
% Parasite area
f=0.1*A;
% Power Required
Pt=((K*lamdai*Ct)+(0.5*CDo*(1+K*mu^2))+(0.5*mu^3*(f/A))+(lamdac*Ct))*rou*A*Vtip^3
% total power included losses
P=1.1*Pt
% RPM
cp=(Pt/(rou*A*Vtip^3));
Q=cp*rou*A*Vtip^2*R;
omega=(Pt/Q)*(60/(2*pi))
b) Results
PT= 683watt
P=752watt
Ω= 2707 RPM
Variation of power with
forward velocity:
a) MatLab code
clc
closeall
clearall
T=288; rou=1.225; Ru=287; gama=1.4;
w=3*9.8; Mtip=0.2;
C=0.03;
R=0.24; A=pi*R^2 ;
K=1.15; N=2;
CDo=0.01; Vc=2;
Vf=0:0.01:30;
for i=1:length(Vf)
Vtip(i)=Mtip*sqrt(gama*Ru*T)-Vf(i);
Ct(i)=(w)/(rou*A*Vtip(i)^2);
Vi=sqrt((w)/(2*rou*A));
lamdai(i)=Vi/Vtip(i);
lamdac(i)=Vc/Vtip(i);
S=(N*C)/(pi*R);
mu(i)=Vf(i)/Vtip(i);
f=0.1*A;
Pt(i)=((K*lamdai(i)*Ct(i))+(0.5*CDo*(1+K*mu(i)^2))+(0.5*mu(i)^3*(f/A))+(lamdac(i)*Ct(i)))*rou*A*Vtip(i)^3;
P(i)=1.1*Pt(i);
end
figure(1)
plot(Vf,P/3,'linewidth',1.5)
gridon
xlabel('Forword Velocity (m/s)','fontsize',14)
ylabel('Power Required (watt) ','fontsize',14)
title('Power of one Rotor','fontsize',18)
figure(2)
plot(Vf,P,'linewidth',1.5)
gridon
xlabel('Forword Velocity (m/s)','fontsize',14)
ylabel('Power (watt) ','fontsize',14)
title('Performnce','fontsize',18)
b) Results
Great Blog, there is so much reality written in this content and everything is something which is very hard to be argued. Top notch blog having excellent content. Land Surveying Drones
ReplyDelete